Abstract:Despite Federated Learning (FL) employing gradient aggregation at the server for distributed training to prevent the privacy leakage of raw data, private information can still be divulged through the analysis of uploaded gradients from clients. Substantial efforts have been made to integrate local differential privacy (LDP) into the system to achieve a strict privacy guarantee. However, existing methods fail to take practical issues into account by merely perturbing each sample with the same mechanism while each client may have their own privacy preferences on privacy-sensitive information (PSI), which is not uniformly distributed across the raw data. In such a case, excessive privacy protection from private-insensitive information can additionally introduce unnecessary noise, which may degrade the model performance. In this work, we study the PSI within data and develop FedRE, that can simultaneously achieve robustness and effectiveness benefits with LDP protection. More specifically, we first define PSI with regard to the privacy preferences of each client. Then, we optimize the LDP by allocating less privacy budget to gradients with higher PSI in a layer-wise manner, thus providing a stricter privacy guarantee for PSI. Furthermore, to mitigate the performance degradation caused by LDP, we design a parameter aggregation mechanism based on the distribution of the perturbed information. We conducted experiments with text tamper detection on T-SROIE and DocTamper datasets, and FedRE achieves competitive performance compared to state-of-the-art methods.
Abstract:This study investigates the self-rationalization framework constructed with a cooperative game, where a generator initially extracts the most informative segment from raw input, and a subsequent predictor utilizes the selected subset for its input. The generator and predictor are trained collaboratively to maximize prediction accuracy. In this paper, we first uncover a potential caveat: such a cooperative game could unintentionally introduce a sampling bias during rationale extraction. Specifically, the generator might inadvertently create an incorrect correlation between the selected rationale candidate and the label, even when they are semantically unrelated in the original dataset. Subsequently, we elucidate the origins of this bias using both detailed theoretical analysis and empirical evidence. Our findings suggest a direction for inspecting these correlations through attacks, based on which we further introduce an instruction to prevent the predictor from learning the correlations. Through experiments on six text classification datasets and two graph classification datasets using three network architectures (GRUs, BERT, and GCN), we show that our method not only significantly outperforms recent rationalization methods, but also achieves comparable or even better results than a representative LLM (llama3.1-8b-instruct).
Abstract:Cross-Domain Few-Shot Segmentation (CDFSS) is proposed to transfer the pixel-level segmentation capabilities learned from large-scale source-domain datasets to downstream target-domain datasets, with only a few annotated images per class. In this paper, we focus on a well-observed but unresolved phenomenon in CDFSS: for target domains, particularly those distant from the source domain, segmentation performance peaks at the very early epochs, and declines sharply as the source-domain training proceeds. We delve into this phenomenon for an interpretation: low-level features are vulnerable to domain shifts, leading to sharper loss landscapes during the source-domain training, which is the devil of CDFSS. Based on this phenomenon and interpretation, we further propose a method that includes two plug-and-play modules: one to flatten the loss landscapes for low-level features during source-domain training as a novel sharpness-aware minimization method, and the other to directly supplement target-domain information to the model during target-domain testing by low-level-based calibration. Extensive experiments on four target datasets validate our rationale and demonstrate that our method surpasses the state-of-the-art method in CDFSS signifcantly by 3.71% and 5.34% average MIoU in 1-shot and 5-shot scenarios, respectively.
Abstract:Extracting a small subset of crucial rationales from the full input is a key problem in explainability research. The most widely used fundamental criterion for rationale extraction is the maximum mutual information (MMI) criterion. In this paper, we first demonstrate that MMI suffers from diminishing marginal returns. Once part of the rationale has been identified, finding the remaining portions contributes only marginally to increasing the mutual information, making it difficult to use MMI to locate the rest. In contrast to MMI that aims to reproduce the prediction, we seek to identify the parts of the input that the network can actually utilize. This is achieved by comparing how different rationale candidates match the capability space of the weight matrix. The weight matrix of a neural network is typically low-rank, meaning that the linear combinations of its column vectors can only cover part of the directions in a high-dimensional space (high-dimension: the dimensions of an input vector). If an input is fully utilized by the network, {it generally matches these directions (e.g., a portion of a hypersphere), resulting in a representation with a high norm. Conversely, if an input primarily falls outside (orthogonal to) these directions}, its representation norm will approach zero, behaving like noise that the network cannot effectively utilize. Building on this, we propose using the norms of rationale candidates as an alternative objective to MMI. Through experiments on four text classification datasets and one graph classification dataset using three network architectures (GRUs, BERT, and GCN), we show that our method outperforms MMI and its improved variants in identifying better rationales. We also compare our method with a representative LLM (llama-3.1-8b-instruct) and find that our simple method gets comparable results to it and can sometimes even outperform it.
Abstract:In recommender systems, the patterns of user behaviors (e.g., purchase, click) may vary greatly in different contexts (e.g., time and location). This is because user behavior is jointly determined by two types of factors: intrinsic factors, which reflect consistent user preference, and extrinsic factors, which reflect external incentives that may vary in different contexts. Differentiating between intrinsic and extrinsic factors helps learn user behaviors better. However, existing studies have only considered differentiating them from a single, pre-defined context (e.g., time or location), ignoring the fact that a user's extrinsic factors may be influenced by the interplay of various contexts at the same time. In this paper, we propose the Intrinsic-Extrinsic Disentangled Recommendation (IEDR) model, a generic framework that differentiates intrinsic from extrinsic factors considering various contexts simultaneously, enabling more accurate differentiation of factors and hence the improvement of recommendation accuracy. IEDR contains a context-invariant contrastive learning component to capture intrinsic factors, and a disentanglement component to extract extrinsic factors under the interplay of various contexts. The two components work together to achieve effective factor learning. Extensive experiments on real-world datasets demonstrate IEDR's effectiveness in learning disentangled factors and significantly improving recommendation accuracy by up to 4% in NDCG.
Abstract:Retrieval-augmented generation (RAG) is a key technique for leveraging external knowledge and reducing hallucinations in large language models (LLMs). However, RAG still struggles to fully prevent hallucinated responses. To address this, it is essential to identify samples prone to hallucination or guide LLMs toward correct responses, which experts then annotate to develop high-quality datasets for refining LLMs. However, the growing scarcity of such datasets makes their creation challenging. This paper proposes using the vast amount of conversations from widespread LLM usage to build these datasets, training LLMs to avoid hallucination-prone questions while accurately responding to manageable ones. Given the impracticality of expert-annotating all conversation records, the paper introduces AL4RAG, which uses active learning to select the most suitable conversation samples for annotation, optimizing performance within an annotation budget. Additionally, recognizing that traditional active learning methods are not fully compatible with RAG due to unsuitable distance metrics, we develop a novel sample distance measurement for RAG active learning. Extensive experiments show that our method consistently outperforms baselines across multiple metrics.
Abstract:With the recent surge in interest surrounding generative paradigms, generative recommendation has increasingly attracted the attention of researchers in the recommendation community. This paradigm generally consists of two stages. In the first stage, pretrained semantic embeddings or collaborative ID embeddings are quantized to create item codes, aiming to capture and preserve rich semantic or collaborative knowledge within these codes. The second stage involves utilizing these discrete codes to perform an autoregressive sequence generation task. Existing methods often either overlook collaborative or semantic knowledge, or combine the two roughly. In this paper, we observe that naively concatenating representations from semantic and collaborative modality leads to a semantic domination issue, where the resulting representation is overly influenced by semantic information, effectively overshadowing the collaborative representation. Consequently, downstream recommendation tasks fail to fully exploit the knowledge from both modalities, resulting in suboptimal performance. To address this, we propose a progressive collaborative and semantic knowledge fusion model for generative recommendation, named PRORec, which integrates semantic and collaborative knowledge with a unified code through a two-stage framework. Specifically, in the first stage, we propose a cross-modality knowledge alignment task, which integrates semantic knowledge into collaborative embeddings, enhancing their representational capability. In the second stage, we propose an in-modality knowledge distillation task, designed to effectively capture and integrate knowledge from both semantic and collaborative modalities. Extensive experiments on three widely used benchmarks validate the effectiveness of our approach, demonstrating its superiority compared to existing methods.
Abstract:Federated Continual Learning (FCL) aims to enable sequentially privacy-preserving model training on streams of incoming data that vary in edge devices by preserving previous knowledge while adapting to new data. Current FCL literature focuses on restricted data privacy and access to previously seen data while imposing no constraints on the training overhead. This is unreasonable for FCL applications in real-world scenarios, where edge devices are primarily constrained by resources such as storage, computational budget, and label rate. We revisit this problem with a large-scale benchmark and analyze the performance of state-of-the-art FCL approaches under different resource-constrained settings. Various typical FCL techniques and six datasets in two incremental learning scenarios (Class-IL and Domain-IL) are involved in our experiments. Through extensive experiments amounting to a total of over 1,000+ GPU hours, we find that, under limited resource-constrained settings, existing FCL approaches, with no exception, fail to achieve the expected performance. Our conclusions are consistent in the sensitivity analysis. This suggests that most existing FCL methods are particularly too resource-dependent for real-world deployment. Moreover, we study the performance of typical FCL techniques with resource constraints and shed light on future research directions in FCL.
Abstract:The recent advancement of Multimodal Large Language Models (MLLMs) has significantly improved their fine-grained perception of single images and general comprehension across multiple images. However, existing MLLMs still face challenges in achieving precise grounding in complex multi-image scenarios. To address this, we first explore a Chain-of-Thought (CoT) framework that integrates single-image grounding with multi-image comprehension. While partially effective, it remains unstable and struggles to capture abstract visual information due to its non-end-to-end nature. Therefore, we introduce Migician, the first multi-image grounding model capable of performing free-form and accurate grounding across multiple images. To support this, we present the MGrounding-630k dataset, which comprises data for several multi-image grounding tasks derived from existing datasets, along with newly generated free-form grounding instruction-following data. Furthermore, we propose MIG-Bench, a comprehensive benchmark specifically designed for evaluating multi-image grounding capabilities. Experimental results demonstrate that our model achieves significantly superior multi-image grounding capabilities, outperforming the best existing MLLMs by 21.61% and even surpassing much larger 70B models. Our code, model, dataset, and benchmark are fully open-sourced at https://migician-vg.github.io/.
Abstract:Cross-Domain Few-Shot Learning (CDFSL) requires the model to transfer knowledge from the data-abundant source domain to data-scarce target domains for fast adaptation, where the large domain gap makes CDFSL a challenging problem. Masked Autoencoder (MAE) excels in effectively using unlabeled data and learning image's global structures, enhancing model generalization and robustness. However, in the CDFSL task with significant domain shifts, we find MAE even shows lower performance than the baseline supervised models. In this paper, we first delve into this phenomenon for an interpretation. We find that MAE tends to focus on low-level domain information during reconstructing pixels while changing the reconstruction target to token features could mitigate this problem. However, not all features are beneficial, as we then find reconstructing high-level features can hardly improve the model's transferability, indicating a trade-off between filtering domain information and preserving the image's global structure. In all, the reconstruction target matters for the CDFSL task. Based on the above findings and interpretations, we further propose Domain-Agnostic Masked Image Modeling (DAMIM) for the CDFSL task. DAMIM includes an Aggregated Feature Reconstruction module to automatically aggregate features for reconstruction, with balanced learning of domain-agnostic information and images' global structure, and a Lightweight Decoder module to further benefit the encoder's generalizability. Experiments on four CDFSL datasets demonstrate that our method achieves state-of-the-art performance.